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1. Introduction

In several earlier papers Sklansky et al. derived tech-

niques and an associated theory for determining whether or

not a digitized blob represented by a finite subset of a mosaic

of squares (a "cellular complex") can be the digitization of

a convex region (a convex "preimage") [4,5,6]. Sklansky defined

a complex to be "cellularly convex" if it has a convex preimage

[4]. He showed that if a complex is "regular", its polygonal

preimage of minimum perimeter reveals the concavities that

every preimage of the complex must have. The restriction of

regularity requires that a complex have no peninsular protrusion

that is one cell wide. Although this is a weak restriction it

is still significant, particularly in noisy images.

The Minsky-Papert definition of convexity may be specialized

to define digital convexity of digital regions (finite 8-connected

,subsets of lattice points on the Euclidean plane) [2]. However,

no useful results concerning digital convexity have been obtained

in terms of this definition.

Recently in [1H Kim proposed a new definition of cellular

convexity, and showed that a complex is convex under the new

definition if and only if its corresponding digital region is

convex by the definition of Minsky-Papert. This leads us to

two distinct but equivalent concepts: digital convexity and

cellular convexity. (Digital blobs and digital convexity refer



to arrays of points; cellular blobs and cellular convexity

refer to arrays of cells.)

In this paper we eliminate the restrict%)n of regularity

by using Kim's re .sed definition. To do so, we use Sklansky's

work on the half-cell expansion of a complex [6]: a complex

is defined to be cellularly convex if there exists a convex

region whose digitized image is the half-cell expansion of

the complex.

A complex determines a unique digital region: the array of

center points of the cells of the complex. We show that a

complex is cellularly convex if and only if the unique digital

region determined by the complex is digitally convex.

We define the minimum-perimeter polygon (MPP) of digital

regions and cellular complexes. Then we show that given a

complex, the minimum-perimeter polygon of its half-cell expan-

sion and the minimum-perimeter polygon of the digital region

determined by the complex are identical. We prove that a

simply 8-connected digital region is digitally convex if and

only if its MPP contains only the points of the digital region.

* A corollary to this is an equivalent result for tight complexes

that are simply 8-connected. These are the principal results

of this paper.

We also show that the convex hull of the set of center

points of the cells of a complex determines the cellular convex

hull of the complex, that is, the smallest cellularly convex



complex containing the complex. In fact, the convex hull of

* the set of center points of the cells of a complex is the MPP

of the half-cell expansion of the cellular convex hull of the

complex. This result leads to an algorithm for determining

the concavity tree of any digital region or any complex.

In the next section, we introduce definitions and notation.

In Section 3, we discuss digital and cellular concavities and

the relation between them. Section 4 is concerned with the

MPPs of digital regions and complexes. The relation between

the I4PP and convexity is also discussed. The concavity tree of

a complex is considered in Section 5.



2. Definitions

In this section we introduce definitions and notations

that are used in this paper.

Digital region

Consider the set of all the lattice points--i.e., theinteger-valued points--in the plane. Let S be a set of lattice

points. Then S denotes the complement of S, that is, the set

of all lattice points not in S. A point of S is an interior

point if all of its four 4-neighbors [3] are points of S. A

point of S is a boundary point if it is not an interior point.

A point of S is a corner point if two of its 4-neighbors are

mutually 8-neighbors and in S. A digital 8-chain (4-chain) is

a sequence of digital points such that every element of the

sequence except the first is an 8-neighbor (4-neighbor) of its

predecessor. A set S of lattice points is 8-connected

(4-connected) if for any two points clc 2 of S, there is a

digital 8-chain (4-chain) between them. A set of S is simply

8-connected if it is 8-connected and § is 4-connected.

A digital region D is any finite set of lattice points

(see Figure 1). The digital region of Figure l(a) is 8-connected;

, 
E0 1---T-

(a) (b)

Figure 1. Two digital regions.



the digital region of Figure l(b) is not. We denote the

(Euclidean) convex hull of the points of D by KD. The line

segment between two points c1 and c2 is denoted by c1c2 and

the directed line segment from cI to c 2 by clC

Digital convexity (Minsky-Papert [2])

A digital region D is said to be digitally convex if there

exists no triplet (clc 2 ,c3 ) of collinear points such that c

and c3 are points of D and c2 is a point of D.

Cellular complex

A square cellular mosaic is the set of squares, called

cells, in a grid of equal horizontal and vertical unit distance

spacing on the plane. Let R be a finite subset of a square

cellular mosaic and oR the set of points of R. DR denotes the

set of points of the edges of all the cells of R and aoR the

boundary of oR. A square cellular complex J is a finite set

J' of cells together with a boundary J, where 3J is any subset

of the edges of J' including aoJ'. Thus J=<J',DJ>, where 31

is any set of edges satisfying 3aJ'QJQ8J'. Hereafter, we use

"complex" in place of "square cellular complex."

Given a complex J, J' denotes the set of cells in J and

6(J) the set of the centers of the cells of J'. Thus, 6(J) is

a digital region uniquely determined by complex J. Given a

digital region D, let J' be the set of cells whose centers are



the points of D. The J' and aoJ' determine a complex J=-J' oJ'>.

The complex J is uniquely determined by D and denoted by y(D).

The complement 5 of a complex J is the set of cells J', the

complement of J'1, with aJ=3oJ'. Thus J=<J',3oJ'>. Two cells

el,e 2 of J are 4-connected in J (or 4-connected, for short) if

they share an edge which is not a subset of aJ. Two cells

el,e 2 of J are 8-connected in J (or 8-connected, for short) if

they share a corner point and no two edges one of whose endpoints

is the corner point belong to J. A cellular 8-chain (4-chain)

is a sequence of cells such that every two successive elements

are 8-connected (4-connected). A complex J is 8-connected if

for any two cells el and e2 of J, there is a cellular 8-chain

between them. A complex J is simply 8-connected if it is 8-

connected, DJ is connected and T is 4-connected. In Figure 2,

complex (a) is simply 8-connected, complex (b) is 8-connected but

not simply 8-connected, and complex (c) is not 8-connected. The

complex (c) consists of two 8-connected components of which

one is simply 8-connected and the other is not.

(a) (b) (c)
Figure 2. Examples of complexes



We call aoJ' the outer boundary of complex J and aJ-aoJ'

the inner boundary of J. A complex J is said to be tight if

it has an empty inner boundary. Otherwise it is nontight.

An element of J' is said to be penisolated if three of its

sides belong to aJ. A complex J is said to be regular if

J' has no penisolated element. An element of J' is an interior

cell if no point of its edges belongs to the boundary of J,

namely 3J. An element of J' is a boundary cell if it is not

an interior cell.

A boundary chain of a simply 8-connected complex J is

a cellular 8-chain whose elements consist of all boundary

cells of J'. The spinal path of a chain is the piecewise linear

curve obtained by connecting the centers of the successive cells

of the chain by straight line segments.

Cellular image

A complex J is said to be the cellular image (or simply,

image) of a plane region q, and q a preimage of J, if

(i) qrOJ'

(ii) for each element e of J', e0 q#0, where e 0 is the

interior of e, and

(iii) if r is an edge of an element e of J' and r°0 fq=,

then r is a subset of 3J, where r is the interior of r.

We denote the image of a plane region q by I(q). Figures 3(a)

and 3(b) show plane regions together with their images, which

are tight and nontight complexes, respectively.



(a) (b)

Figure 3. Examples of the images of plane regions.

Half-cell expansion [6]

Let M denote the given square cellular mosaic. Construct

another square cellular mosaic M' by displacing M by one-half

of the diagonal of a cell along the direction of a diagonal.

Let J be a complex on M and aJ its boundary. The half-cell

expansion of J, denoted H(J), is the complex on M' such that

the spinal path of its boundary chain is 3J, the boundary of J.

In Figure 4, the complex Ji is shown by the dashed lines and

its half-cell expansion H(Ji) by the solid lines. Figure 4(a)

shows the complex J1 and H(J1 ) both of which are tight. In

Figure 4(b) J2 is tight and H(J2) is not. Neither J3 nor

H(J3) in Figure 4(c) is tight.
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(a) J and H(J1 ) (b) J2 and H (J2 )

I I
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(c) J3 and H(J3)

Figure 4. Complexes and their half-cell expansions.

Cellular convexity

A complex J is said to be cellularly convex if there

exists a convex plane region q such that the half-cell expan-

sion of J is the image of q, that is, H(J)=I(q).

This is a modification of the original definition of

cellular convexity of Sklansky in [4]. In the original

definition, a complex J is cellularly convex if there exists

a convex plane region q such that J=I(q).



Cellular concavity (Kim [11)

Given a complex J, let c1 and c2 be the centers of elements

eI and e2 of J', respectively. (From now on, the center of an

element e will always be denoted by a corresponding c.) Then

P(J;clc 2 ) denotes the set of polygons each of whose boundaries

consists of a segment of c1c2 and the outer boundary of J and

whose interiors are subsets of 5J', the complement of aJ'.

In Figure 5, P(J;clc 2) is the set of four polygons shown as

shaded regions.

Figure 5. P(J;cl,c 2)

A complex J is said to have a concavity between e1 and e2

if P(J;clc 2 ) contains a point of 6(J). A complex J is said to

have a concavity if there are two cells e1 and e2 of J' between

which there is a concavity.

In the remainder of the paper we assume that complexes and

digital regions are simply 8-connected unless stated otherwise.



3. Digital and cellular convexity

In this section we derive a relationship between digital

convexity and cellular convexity. The main result is that

a tight complex J is cellularly convex if and only if the

digital region 6(J) is digitally convex.

First we state as lemmas three knom results that will-be

used to prove our result.

Lemma 1 (Lemma 3 [11)

If a tight complex J has a concavity, then there is no convex

plane region q whose image is J.

Lemma 2 (Theorem 4 [1])

A regular tight complex J does not have any concavity if

and only if there is a convex plane figure q whose image is J.

Lemma 3 (Theorem 5 [1ii)

A tight complex J does not have any concavity if and only

if 6(J) is digitally convex.

Theorem 4

Given a tight complex J, 6(J) is digitally convex if there

is a convex plane region q whose image is J.

Proof: By Lemma 1, J has no concavity. Thus, 6(J) is digitally

convex by Lemma 3. 0

Now consider the tight complex T and 6(T) shown in Figure 6.



(a) Complex T (b) Digital region 6(T)

Figure 6.

It is easy to see that 6(T) is digitally convex but there is

no convex region q such that T=I(q).

Lemma 5

If a complex J has a convex preimage, then it is tight.

Proof: Suppose J is not tight. Then it has nonempty inner

boundary. Let el and e2 be two elements of J' sharing an edge

which is a part of the inner boundary of J, as shown in Figure 7.

e e

Figure 7.

Let q be any preimage of J. Since e1 and e2 are elements of

J', there are interior points x of e1 and y of e2 that are

points of q. Since the points of the edge shared by el and e

except possibly the endpoints are not in q, xy contains a point

... .. _ _ _ _ __I II I I l I II I ,,i _ __ _ _ _ __.... .... I .. .. H l
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not in q. Hence, q is not convex, and so J does not have any

convex preimage.0

Lemma 6

If H(J) is tight, then J is also tight.

Proof: Suppose J is not tight. Then it has a nonempty inner

boundary. A nonempty inner boundary of J induces a nonempty

inner boundary of H(J). Thus H(J) is also not tight.L

Lemma 7

If a complex J is tight, then its half-cell expansion H(J)

is regular.

Proof: Suppose H(J) is not regular. Then it has a penisolated

cell. Consider such a cell shown in Figure B. The part uvw of

the boundary DH(J) is obtained by displacing the part u'v'x' of

the boundary aj, and the part xwv of aH(J) by displacing the part

I L'

tr

Figure 8. A penisolated cell of H(J).

u'v'w' of aJ. The part w'v'x' is a subset of the outer boundary

of J and the part v'u' is a subset of the inner boundary of J.

Thus, the inner boundary of J is not empty and J is not tight,

which proves the lemma.D



Lemma 8

A tight complex J has a concavity if and only if its

half-cell expansion is either nontight or has a concavity.

Proof: Suppose J has a concavity. Then by Lemma 3, 6(J) is not

digitally convex and therefore there exists a triplet of colli-

near points (cCC 2) such that Cl,C 2 E6(J) and cE6(J). Let

e be the cell of which c is the center. If a pair of opposite

edges of e belongs to aj, the line segment which is parallel

to the edges and passes through c becomes a part of the inner

boundary of H(J). Hence, H(J) is not tight. Now suppose that

neither pair of opposite edges of e belongs to 3J. Then there

are two adjacent edges of e that do not belong to aJ. Without

loss of generality assume that these two edges are the top and

right side edges. Let c ,c' and cl be the points one half dia-

gonal of a cell away in the direction of diagonals upward to the

right of c1 , c and c2, respectively. Then they are collinear,

c1 and c are points of 6(H(J)), and c is a point of 6(H(J)).

Hence, H(J) has a concavity.

Next suppose that H(J) is either nontight or has a concavity.

First consider the case when H(J) is not tight. There exists a

portion of the inner boundary of H(J) that starts from the outer

boundary of H(J) and has unit length as shown in Figure 9.
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Figure 9.

Then the portion is formed by the half-cell expansion from the

edges of two elements eI and e2 of J' separated by a cell e of

Tr. Then P(J;clc 2 ) contains c and so J has a concavity. Now

consider the case when H(J) has a concavity. Then there are

two vertices cI and c2 of K6(H(J)) such that P(H(J);clc 2 ) con-

tains a point c of (H(J))'. The points Cl and c2 are corner

points of cells ej and ej of J', respectively. Let e' be a

cell of T such that c is one of its corner points and c' is

farther away from c1c2 than c is. (See Figure 10 for an example.)

Then P(J;cj,c) contains c' which is a point of J'. Thus J has

a concavity.EU

II

l I eC' L

IC C,' "

(a) (b)

Figure 10.



Theorem 9

A tight complex J is cellularly convex if and only if

the digital region 6(J) is digitally convex.

Proof: Suppose that J is cellularly convex. Then H(J) has a

convex preimage, and therefore is tight by Lemma 5. By Lemma 6,

J is also tight. Hence, by Lemma 7, H(J) is regular. So H(J)

does not have any concavity because of Lemma 3, and J also has

no concavity by Lemma 8. Therefore, 6(J) is digitally convex

by Lemma 4.

Now suppose that 6(J) is digitally convex. Then J does not

have any concavity because of Lemma 3. By Lemma 8, H(J) is

tight and has no concavity. H(J) is also regular because of Lemma

7. Therefore, by Lemma 2, H(J) has a convex preimage and thus

J is cellularly convex.D



4. The minimum-perimeter polygon (MPP)

In this section we define the minimum-perimeter polygons

(MPPs) of digital regions and complexes. Then we show that

given a tight simply 8-connected complex J, the MPP of its

half-cell expansion H(J) and the MPP of 6(J) are identical.

The main results are: A digital region D is digitally con-

vex if and only if its MPP does not contain any point of D,

and a complex J is cellularly convex if and only if the MPP

of H(J) does not contain the center of any cell of J.

MPPs of digital regions

Let D be a digital region. A polygon q is proper with

respect to D if it contains every point of D and its interior

does not contain any point of D. Consider J=y(D), the tight

cellular complex uniquely determined by D. Since y(D) is tight,

V is a connected closed curve. Hence J can be traversed

covering every edge of DJ exactly once. The cell whose center

is a corner point of D (or U) is called a corner cell of J (or

J). Whenever the edges of a corner cell of either J or Y are

traversed, aJ changes its direction. We construct a sequence P

of corner points of D and D as follows: let co denote the

leftmost point of the top row of D and let e0 denote the left

top cell of J. Note that c is a corner point of D, that c0 is

the center point of e0 , and that e0 is a corner cell of J.

Starting from the left to- - int o2 e0 , traverse 3J clockwise.[ Of



Whenever aJ changes its direction, a pair of adjacent edges of

a corner cell is traversed. Then the corner point of D, the

center of the corner cell, becomes the next element of P. The

sequence P is completed when aJ is traversed once. For the

case of the digital region shown in Figure 11, P=.(c0,cl,...,c23).

23° -- - - -
K .I

C1 -I I
iI t- ----------- I

------ 71
J -I

L .

I - - - - I

I .-------

Figure 11. A digital region D and the corner points

of D and ff.

Let P=(c 1c 1 1 "*,Ce) be the sequence of the corner points

of D and U defined above. Let P.=(c1 c 2 ,c. ) be a

subsequence of P and consider it as a polygon whosi sequence

of vertices is P Since P is proper, for any digital region,



there is at least one proper polygon P. whose sequence of

vertices is a subsequence of P.

Lemma 10

If Pm=(Cm 1Cm 2,'',C M) is a proper polygon with the

shortest perimeter, then Pm is a subsequence of P and every

convex vertex of Pm is a point of D and every concave vertex

of P is a point of D.m

Proof: If Pm has a vertex which is not a point of D or D,

then we can construct a proper polygon whose perimeter is

strictly shorter than Pm" Thus Pm must be a subsequence of

P.

Now suppose that cm. is a convex vertex and a point of .
M.

Let (c icm '.'C ) be the subsequence of P such that
i,2 i,k

(i) mi qmi'l<,...,<mi,k<mi+l ,

(ii) its elements are points of D and thus points of P, and

(iii) the polygon P'=(c m...,c c ,...c ,c
1  il i,k i+l m

is a proper polygon, where vertices cm ,ljk, are
i,J

convex.

Then P' has shorter perimeter than Pm' which is a contradiction.

Now suppose that cm. is a concave vertex and a point of D.

Then by a similar argument as above, we can obtain a proper

polygon P" whose perimeter is shorter than Pm" 13



Lemma 11

Given a digital region, its proper polygon with the shortest

perimeter is unique.

Proof: Suppose not, and let P=(c1 ,...,c. ) and P2 =(c. ,...,c1 i k  z .1 'Jk.
be two proper polygons with the shortest perimeter. We note

that c 1=c. =cO . Let s be the smallest integer such that c, s c.

Without loss of generality assume that c C. lies to the
________ s-i s

right of c. C. . Let x be the first point at which the boun-IS-I 3s

daries of P1 and P2 intersect after c. (=c. ). Such a point
1s-i 3s-i

x exists, since P1 and P2 meet again at c0 . Since P1 and P2

are proper polygons, between cs_1 and x, the vertices of P1 and

P2 are points of D and D, and hence convex and concave by Lemma

10, respectively. But this is not possible. Ei

Given a digital region, its minimum-perimeter polygon (MPP)

is the unique proper polygon with the shortest perimeter. As

we noted in Lemma 10, the convex vertices of the MPP of a

digital region D are corner points of D and the concave vertices

are corner points of 5.

MPPs of regular complexes

We first define the distance between two polygons. (Even

though more generally we can define the distance between two

compact sets of points on the plane, we restrict our discussion

to polygons, which are compact sets.) For any two points p and

q, let d(p,q) denote the Euclidean distance between them.



The distance between a point q and a polygon P is defined as

d(q,P) = inf{d(q,p) IpEP.

We define the e-neighborhood of a polygon P as

N (P) = {qld(q,P)<E:.

The distance between two polygons P and Q is defined as

d(P,Q) = inf{s;IPrN E(Q) and QN E(P)}.

Let J be a regular complex. A polygon q is proper with

respect to J if J=I(q). Suppose that Pi is a proper polygon.

Note that if e is a boundary cell of J, then there is an
interior point of e that is also a point of P.. Let £.

1 1

denote the perimeter of a proper polygon P.. Let Z be the

greatest lower bound among the perimeters of all proper polygons.

Construct a Cauchy sequence of proper polygons (PIP 2 ,..,Pi ...

such that L.-' as i--. It has been shown that there exists a

polygon P such that Pi-P, that is, d(PiP)-*O, and that the

perimeter of P is t (see [7]).

Lemma 12

The polygon P defined above is unique. That is, any Cauchy

sequence (PIP2,...,Pi,...) such that t i as i-- converges

to P.

Proof: Suppose not and let (PIP2 ,...,Pi,...) and (Pl'P2'''''Pi

be two Cauchy sequences such that P *P, P!jP' and POP'. Since

P#P', there exists an £>O such that either PON, (P') or P'%N C(P).



Thus, there exists a point p on the boundary of P and a point q

on the boundary of P' such that d(p,q)- F. Let 6>0 and i be such

that 6<<c and d(P.-P)<6,t.-Z<6,d(P!,P')<6 and l'-l<6. Then
1 1 1 1

there exist points p' on the boundary of P. and q' on the boun-
1

dary of P! such that d(p',q')>'. Then it is not difficult to see
1

that there is a proper polygon P. such that max{ti-Ljt!-Zj}>6.

That is, the perimeter of P. is less than Z, which is a contra-

diction. D

Given a regular complex J, its minimum-perimeter poly-

gon (MPP) is the unique polygon P defined above.

Lemma 13

Let J be a regular complex and t be the greatest lower

bound of the perimeter of all proper polygons of J. If P

is a polygon such that its perimeter is t and there is a

proper polygon Pi satisfying d(Pi,P)<ci and ti-t<Ei for any

El>0, then P is the MPP of J.

Proof: Let ci=l/i for each i=1,2,-. Then (PI,P2,...,

Pi,..') is a Cauchy sequence such that Pi+ P as i-- . Thus

P is the MPP of J. 0

Theorem 14

Let J be a complex such that its half-cell expansion

H(J) is a tight complex. Then the MPP of the complex H(J)

and the MPP of the digital region 6(J) are identical.



Proof: By Lemma 6, J is tight and so H(J) is regular by

Lemma 7. Since H(J) is tight, every boundary cell of H(J)

contains a boundary point of 6 (J). For any polygon to be

a preimage of H(J), it must contain every point of 6(J) and

its interior must not contain any point of TT. By defini-

tion the MPP P of 6(J) contains every point of 6(J), does

not contain any point of T(J) in its interior and has the

shortest perimeter Z among all such polygons. We also note

that if e is a cell of H(J), then e nP#O.

We claim that P is also the MPP of the complex H(J).

Because of Lemma 13, to prove our claim, we only have to

I'I

Figure 12. A complex J, H(J), a proper polygon P.i and MPP

P of H(J).



show that for every c>0, there exists a proper polygon

Pi of H(J) such that d(Pi,P)<E and ti-t<E, where ti is

the perimeter of Pi. Let P'=(cO,cl,.--,ct) be a sequence

of corner points on the boundary of P in clockwise order

such that if ci is a corner point of 6(J), then it is a

convex vertex of P and if ci is a corner point of 6J,

then it is either a concave vertex of P or a virtual

vertex [6] of P. (Considered as polygons, P and P' are

identical except that P' may contain virtual vertices.)

Let ei be the corner cell to which a convex vertex ci of

P belongs. Let di be the diagonal of ei with ci as an

endpoint. Given an E>O, determine 6>0 such that the poly-

gon Pi=(cb,c'--,c ) has perimeter ti which is less than

£+- and d(P.,P)>s, where c! is the point on the diagonal

di 6 distance away from ci if ci is a convex vertex, and

c!=ci otherwise. Also 6 is small enough so that the interior

of P. does not contain a point of D. Then Pi is the proper

polygon that was sought. [

Theorem 15

A digital region D is digitally convex if and only if

no point of U is a point of the MPP of D.

Proof: Suppose that no point of D is a point of P, the

MPP of D. Then P is a convex polygon and contains all



points of D. Thus, there are no two points ci,c2, of D

such that a point of U is on clc2 . Therefore, D is digitally

convex.

Now suppose that there is a point, say c, of D which is

also a point of P, the MPP of D. Then c is either a concave

vertex or a virtual vertex. Let cI and c be the vertices

of P such that they are points of D and nearest to c on

each side of c. Since there are at least three convex

vertices in any polygon and every convex vertex of P is a

point of D: the points c1 and c2 exist. Then P(y(D);cl,c 2 )

contains c and thus y(D) is not cellularly convex. Since

y(D) is simple, D is not digitally convex by Lemma 3. D

Theorem 16

A tight complex J is cellularly convex if and only if

there is no cell of Y' such that its center lips in the MPP

of H(J), the half-cell expansion of J.

Proof: By Theorem 14, the MPP of H(J) is identical to

the MPP of 6(J). Thus, the proof is immediate from

Theorems 9 and 15. D
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5. The cellular concavity tree

We use a structure called the cellular concavity tree

to describe the shapes of concavities of a complex. In this

section we restrict our attention to tight complexes that are

simply 8-connected. We define the concavities of a tight

complex as the simply 8-connected components of the diff-

erence between the complex and its cellular convex hull.

Given a tight complex J, let KJ=(Clc 2 , -',ct) be the

convex hull of 6(J). For each i, 1is, let (cilci2 ,..

cij i ) be the sequence of the centers of cells on cici+ I ,

where +=. Then Ph=(Cl,Cl ,  ,Cljl,C2, - ,c, 1

c z t) is the same polygon as KJ except that Ph may have

virtual vertices. Let KJ be the unique complex such that

the MPP of its half-cell expansion HKJ is Ph and every

vertex of Ph is a center ofKJ. (See Figure 13 for an example.)

Figure 13. A complex J, KJ and KJ.



Theorem 17

Given a complex J, KJ is the smallest complex such

that it is cellularly convex and contains J, that is,

J' (KJ)'.

Proof: By Theorem 16, KJ is cellularly convex. Since KJ

has all the points of S(J) and KJ and Ph are the same

polygons (except possibly for the extra virtual vertices

of Ph), J is contained in KJ. Suppose J KJ and I is any

complex such that Jr I KJ. Then there exists a point c

of 6(KJ) which is not a point of 6(I). Thus there exists

i, lfi'Z, such that ci is a vertex of KJ and P(J;cilci+)

contains c. Therefore I is cellularly concave. This shows

that KJ is the smallest cellularly convex complex containing

J.c

Cellular convex hull

The cellular convex hull of a complex J is the smallest

cellularly convex complex which contains J, denoted by KJ.

The above theorem shows that the cellular convex hull of

a complex J is well defined and is obtained from the convex

hull of 6(J). The next theorem states a result analogous

to that in Euclidean geometry.

Theorem 18

Given a complex J, let {Ji) be the set of all cellularly

convex complexes that contain J. Then KJ=Q J
1i1



Proof: Since KJ is cellularly convex and contains J,

KJ=J for some i, and hence JiQKJ. Now it remains to

show that KJ Q J.. It is sufficient to show that i Ji

is cellularly convex. Suppose not. Then by Theorem 9,

there is a triplet (clc 2 ,C3 ) of collinear points such

that clc 3 E( i ) and c2 6( Ji ) . Then
for some i. But cl,c 3 E Ji and thus Ji is not cellularly

convex, which is a contradiction. 0

Cellular concavity tree

The cellular concavity tree of a complex J is defined

operationally by the following recursive algorithm [6].

Algorithm CONCAVITY-TREE (J)

1. If J is cellularly convex then return.

2. Find KJ.

3. For each Ji' where J. denotes the i-th 8-
1

connected component of KJ-J

do Son(i)*-Ji; call CONCAVITY-TREE(J i ) end

In step 1, whether or not a complex is cellularly

convex may be determined due to Theorem 16. In step

2 to find KJ, first KJ is found. An algorithm to find

KJ is given in [1]. From KJ, KJ may be found.

Figure 14 shows the cellular concavity tree of the

complex J shown in Figure 13.



Jl J23

J3 141 J42 J43 J44

Figure 14. The cellular concavity tree of J in Figure 13.
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6. Conclusion

Initially Sklansky defined cellular convexity in order

to treat the following question: under what conditions does a

complex have a convex preimage? He succeeded in answering the

question by showing that a regular complex is cellularly convex

(has a convex preimage) if and only if its MPP is convex.

Digital convexity of digital regions may be viewed as a

special case of the Minsky-Papert definition of convexity. The

relation between the two definitions was not noticed until

recently partly because the former definition is in terms of

preimages while the latter is in terms of a geometric property.

Recently Kim showed that these two are equivalent except for the

regularity condition.

In this paper, we unify the concepts of digital convexity

and cellular convexity. We accomplish this by revising the

definition of cellular convexity, using the concept of the half-

cell expansion of a complex. We have shown that with this revised

definition, digital convexity and cellular convexity are equi-

valent. Furthermore, the MPPs and concavity trees of digital

regions and complexes are shown to be identical.

These results reinforce the soundness of our definitions

of digital convexity, cellular convexity and the associated

theory.
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